
配列からリスト変換方法

Javaで配列をリストに変換する方法はいくつかありますが、どの方法を使うべきかは、特定のニーズによっ
て異なります。それぞれの方法には利点や注意点があるため、それを考慮して選ぶ必要があります。

1. `Collections.addAll`

java

List<String> list = new ArrayList<>();

Collections.addAll(list, array);

利点: 既存のリストに要素を追加できる。
注意点: 新しいリストを初期化する手間があり、最初に空のリストを作る必要がある。

2. `Arrays.asList()`

java

List<String> list = Arrays.asList(array);

利点: 配列からすぐにリストを作成でき、シンプル。
注意点: 作成されたリストは固定サイズのリスト（サイズ変更不可）。`add()`や`remove()`は使えな

い。

3. `List.of()`

java

List<String> list = List.of(array);

javaで配列からリストに変換する方法がたくさんあるがどれを使えばいいのか？
1.Collections.addAll
2.Arrays.toList
3.List.of()
4.Arrat.stream().collect(collections.toList)
5.Arrays.stream().toList()
6.Arrays.stream().boxed.toList()

Printed using Save ChatGPT as PDF, powered by PDFCrowd HTML to PDF API. 1/9

https://chat.openai.com/
https://pdfcrowd.com/save-chatgpt-as-pdf/?ref=chatgpt
https://pdfcrowd.com/api/html-to-pdf-api/?ref=chatgpt

利点: イミュータブル（変更不可）のリストを簡単に作れる。
注意点: リストが変更不可であるため、要素の追加や削除ができない。Java 9以降で使用可能。

4. `Arrays.stream().collect(Collectors.toList())`

java

List<String> list = Arrays.stream(array).collect(Collectors.toList());

利点: ストリームAPIを使い、柔軟な変換が可能。リストは変更可能。
注意点: やや冗長。

5. `Arrays.stream().toList()` (Java 16以降)

java

List<String> list = Arrays.stream(array).toList();

利点: シンプルでストリームを使って変換できる。`List.of()`と同様にイミュータブルなリストを返

す。

注意点: リストが変更不可。

6. `Arrays.stream(array).boxed().toList()` (基本型配列用)

java

List<Integer> list = Arrays.stream(intArray).boxed().toList();

利点: プリミティブ型配列（`int[]`など）をラップし、リストに変換できる。

注意点: 基本型をオブジェクトに変換するため、少しオーバーヘッドがある。リストはイミュータブ
ル。

どの方法を使うべきか？

イミュータブルなリストが必要な場合: `List.of()`や`Arrays.stream(array).toList()`を使います。

これらは変更不可のリストを返します。

変更可能なリストが必要な場合: `Arrays.asList()`が最もシンプルですが、リストのサイズ変更がで
きないので注意が必要です。サイズ変更が必要な場合は、

`Arrays.stream().collect(Collectors.toList())`や`Collections.addAll()`を使うと良いでしょう。

プリミティブ型配列を扱う場合: `boxed()`を使う方法（6番目）が必要です。

状況に応じて、これらの方法を選択してください。

Printed using Save ChatGPT as PDF, powered by PDFCrowd HTML to PDF API. 2/9

https://chat.openai.com/
https://pdfcrowd.com/save-chatgpt-as-pdf/?ref=chatgpt
https://pdfcrowd.com/api/html-to-pdf-api/?ref=chatgpt

いいえ、`Arrays.stream(array).boxed().toList()` の場合、生成されるリストは**不変（イミュータブ
ル）**です。

Java 16以降、`Stream.toList()`メソッドはイミュータブルなリストを返します。したがって、このメソッ

ドを使用した場合、リストのサイズ変更（`add()`や`remove()`など）はできません。イミュータブルリス

トでは要素の追加、削除、置換が禁止されています。

もし可変型（ミュータブル）なリストが必要であれば、以下の方法を使うとよいでしょう。

可変型リストを取得する方法

java

List<Integer> list = Arrays.stream(array).boxed().collect(Collectors.toList());

この方法では、`Collectors.toList()`を使ってリストを生成します。このリストは可変型なので、`add()`

や`remove()`などの操作が可能です。

以下の表に、Javaで配列からリストに変換する7つの方法について、可変型か不変型か、参照型・プリミテ
ィブ型のサポート状況、さらに`set()`メソッドを使って要素を変更した場合に元の配列にも影響があるか

どうかを整理しました。

方法

可変

型

or
不変

型

参照

型配

列

プリミティブ

型配列

`set

によ

更で

に影

1. `Collections.addAll()`
可変

型
〇

〇

（`boxed()`

が必要）

×

2. `Arrays.asList()` 可変

型

（※
サイ

〇 〇

（`boxed()`

が必要）

〇（参

型の場

のみ）

6は可変型ですか？

今までの７つの変換方法を可変型か不変型、参照型とプリミティブ型の両方が使えるかどちらかだけ

か、setが使える場合は要素の内容を変えたら元の入れるの内容も変わるのかを表にしてください

Printed using Save ChatGPT as PDF, powered by PDFCrowd HTML to PDF API. 3/9

https://chat.openai.com/
https://pdfcrowd.com/save-chatgpt-as-pdf/?ref=chatgpt
https://pdfcrowd.com/api/html-to-pdf-api/?ref=chatgpt

方法

可変

型

or
不変

型

参照

型配

列

プリミティブ

型配列

`set

によ

更で

に影

ズ変

更不

可）

3. `List.of()` 不変

型
〇

〇

（`boxed()`

が必要）

×

4. `Arrays.stream().collect(Collectors.toList())` 可変

型
〇

〇

（`boxed()`

が必要）

×

5. `Arrays.stream().toList()` 不変

型
〇

〇

（`boxed()`

が必要）

×

6. `Arrays.stream(array).boxed().toList()` 不変

型

〇

（プ

リミ

ティ

ブ不

可）

〇

（`boxed()`

で対応）

×

7.
`Arrays.stream(array).boxed().collect(Collectors.toList())`

可変

型

〇

（プ

リミ

ティ

ブ不

可）

〇

（`boxed()`

で対応）

×

詳細説明

可変型 or 不変型:
可変型: リストに要素の追加や削除が可能。
不変型: リストが変更不可、要素の追加や削除ができない。

参照型配列: 参照型（オブジェクト型）配列（例：`String[]`）を使った場合。

プリミティブ型配列: プリミティブ型（例：`int[]`）を使った場合。プリミティブ型配列は`boxed()`

メソッドでラッピングする必要があります。

`set()`による変更で配列に影響: `set()`メソッドを使ってリストの要素を変更した場合、元の配列に
影響があるかどうか。

〇: `Arrays.asList()`で作成されたリストは、元の配列に対するビュー（参照）なので、リスト
の要素を変更すると元の配列も変更されます。ただし、これは参照型（オブジェクト型）のみ

で、プリミティブ型では適用されません。

重要な注意点

`Arrays.asList()`はサイズ変更ができない可変型リストです。`set()`による要素の変更は可能です

が、要素の追加や削除はできません。

Printed using Save ChatGPT as PDF, powered by PDFCrowd HTML to PDF API. 4/9

https://chat.openai.com/
https://pdfcrowd.com/save-chatgpt-as-pdf/?ref=chatgpt
https://pdfcrowd.com/api/html-to-pdf-api/?ref=chatgpt

`List.of()`や`Stream.toList()`は不変型リストを返すため、要素の追加、削除、変更ができませ

ん。

プリミティブ型配列（`int[]`など）を扱う場合、`boxed()`を使ってラップしないとリストに変換で

きません。

この表を参考に、用途に応じて最適な方法を選んでください。

確かに、表をもとに考えると、`Collections.addAll()`（方法1）は万能な選択肢に見えます。理由は以下
の通りです。

`Collections.addAll()`のメリット:

1. 可変型リストを作成できるため、要素の追加や削除が自由に可能です。
2. 参照型配列にもプリミティブ型配列にも対応できます（プリミティブ型配列の場合、`boxed()`でラッ

ピングが必要ですが）。

3. 他の方法と比較してコードが短くシンプルです。

java

String[] array = {"A", "B", "C"};

List<String> list = new ArrayList<>();

Collections.addAll(list, array);

注意点:

元の配列に影響を与えない: `Collections.addAll()`を使ってリストに要素を追加しても、元の配列に
は影響がありません。リストに対して変更を加えても、配列側にその変更は反映されません

（`Arrays.asList()`の場合は参照型であれば元の配列に影響を与えます）。

新しいリストの作成が必要: 初めにリストを自分で作成する必要がありますが、それほど負担ではあり
ません。

全体として、可変型でプリミティブ型にも対応でき、コードも短くできるため、確かに

`Collections.addAll()`は汎用的で扱いやすい方法です。他の選択肢と比べて制限が少ないので、幅広いシ

ーンで使いやすいでしょう。

この表をもとに考えると万能でコードが短くなるのは1ですね

他の方法しかダメというときもあるのですか？

Printed using Save ChatGPT as PDF, powered by PDFCrowd HTML to PDF API. 5/9

https://chat.openai.com/
https://pdfcrowd.com/save-chatgpt-as-pdf/?ref=chatgpt
https://pdfcrowd.com/api/html-to-pdf-api/?ref=chatgpt

`Collections.addAll()`は確かに汎用的で便利ですが、他の方法しか適さない、または望ましい場合もあり

ます。特定の要件や状況によって、他の方法を選ぶべき場合を以下に示します。

1. イミュータブルなリストが必要な場合

使用するべき方法: `List.of()` や `Arrays.stream().toList()`
理由: `Collections.addAll()`で生成するリストは可変ですが、場合によってはリストを変更不可にし
ておきたい（安全性を確保したい）ことがあります。例えば、設定値や定数リストとして使う場合、

リストが変更されない保証が欲しいときはイミュータブルなリストが適しています。

java

List<String> list = List.of("A", "B", "C");

// このリストは変更できない

2. 元の配列とリストを同期させたい場合

使用するべき方法: `Arrays.asList()`
理由: `Arrays.asList()`で生成したリストは元の配列のビュー（参照）であるため、リストで要素を
変更すると元の配列にも反映されます（参照型に限る）。逆に、元の配列を変更すればリストの内容

も変わります。配列とリストを同期させて扱いたい場合にはこの方法が最適です。

java

String[] array = {"A", "B", "C"};

List<String> list = Arrays.asList(array);

list.set(0, "Z"); // 元の配列の最初の要素も "Z" に変わる

3. ストリーム処理や高度な操作が必要な場合

使用するべき方法: `Arrays.stream().collect(Collectors.toList())` や `Arrays.stream().toList()`
理由: ストリームAPIを使いたい場合や、フィルタリング、マッピング、集約などの操作をリスト化す
る前に行いたい場合に有効です。特に大きなデータセットに対して効率的な処理を行いたい場合や、

並列処理をしたい場合にはストリームが適しています。

java

int[] array = {1, 2, 3, 4};

List<Integer> list = Arrays.stream(array)

 .boxed()

 .filter(i -> i % 2 == 0)

 .collect(Collectors.toList()); // 偶数のみのリスト

4. プリミティブ型配列の変換が必要な場合
Printed using Save ChatGPT as PDF, powered by PDFCrowd HTML to PDF API. 6/9

https://chat.openai.com/
https://pdfcrowd.com/save-chatgpt-as-pdf/?ref=chatgpt
https://pdfcrowd.com/api/html-to-pdf-api/?ref=chatgpt

使用するべき方法: `Arrays.stream(array).boxed().collect(Collectors.toList())` または
`Arrays.stream(array).boxed().toList()`

理由: `Collections.addAll()`はプリミティブ型の配列にそのまま対応できません。プリミティブ型配
列（`int[]` など）をリストに変換する場合、`Stream`を使ってプリミティブ型をオブジェクトにラッ

プ（`boxed()`）する必要があります。

java

int[] array = {1, 2, 3};

List<Integer> list = Arrays.stream(array).boxed().toList();

5. サイズ変更が不要でシンプルなコードを求める場合

使用するべき方法: `List.of()` や `Arrays.asList()`
理由: 変更不要な場合に、コードを最短化してリストを作りたいとき。`Collections.addAll()`よりも

短いコードでリストを初期化できます。

java

List<String> list = List.of("A", "B", "C"); // 簡潔にイミュータブルリストを作成

結論

`Collections.addAll()`は万能に見えますが、特定の要件（イミュータブル性の保証、配列とリストの同

期、プリミティブ型の扱い、ストリーム処理の使用）がある場合には、他の方法の方が適していることがあ

ります。そのため、状況に応じて最適な方法を選択することが重要です。

配列とリストの同期が必要になる場面は、配列とリストが同じデータを共有し、どちらの変更も即座に反映

されることが求められる場合です。具体的には、以下のようなケースが考えられます。

1. 互換性のための中間層

例えば、配列ベースのAPIとリストベースのAPIの両方を利用する必要がある場合、配列とリストの間でデ
ータを共有することで、同じデータを双方で扱えます。これにより、配列ベースの操作とリストベースの操

作の結果が同期され、どちらのデータにも影響が反映されます。

例:

配列リストの同期はどのような場所で必要になりますか？

Printed using Save ChatGPT as PDF, powered by PDFCrowd HTML to PDF API. 7/9

https://chat.openai.com/
https://pdfcrowd.com/save-chatgpt-as-pdf/?ref=chatgpt
https://pdfcrowd.com/api/html-to-pdf-api/?ref=chatgpt

古いライブラリやフレームワークが配列を使用し、最新のコードベースがリストを使用している場

合。

同じデータを変更する複数のモジュールで、片方が配列、もう片方がリストを使用する場合。

java

String[] array = {"A", "B", "C"};

List<String> list = Arrays.asList(array);

// 配列を変更
array[0] = "X";

System.out.println(list); // [X, B, C]

// リストを変更
list.set(1, "Y");

System.out.println(Arrays.toString(array)); // [X, Y, C]

このように、リストや配列のどちらかに変更を加えると、もう一方にも即座にその変更が反映されます。こ

れが同期のメリットです。

2. 低レベルな配列操作が必要な場面

Javaでは、配列は固定サイズであり、パフォーマンスやメモリ効率のために直接操作されることが多いで
す。リストで操作しやすくしておきながら、必要に応じて配列としてのパフォーマンスを活用したい場合に

は、`Arrays.asList()`による配列とリストの同期が便利です。

例:

ゲーム開発やリアルタイム処理などで、メモリ効率が重視される場合。

データセットのサイズは変わらないが、頻繁に要素の内容を変更したい場合。

3. UIコンポーネントやバインディングのデータ構造

ユーザーインターフェース（UI）の構築において、配列がベースとなるコンポーネントと、リストがベース
のバインディングシステムやデータモデルが混在する場合、配列とリストを同期させることで両者の状態を

一致させることが重要です。

例:

SwingやJavaFXのUIコンポーネントで、配列をベースにしているデータモデルとリスト操作が連携す
る場合。

4. シンプルなメモリ管理やデータ転送

一部のプログラムでは、配列がメモリ効率的な方法として利用され、そこでのデータをリストにラップして

操作するケースがあります。同期を使うことで、両者が常に最新のデータを反映し合うようにできるため、

データの一貫性を保つことができます。

例:

Printed using Save ChatGPT as PDF, powered by PDFCrowd HTML to PDF API. 8/9

https://chat.openai.com/
https://pdfcrowd.com/save-chatgpt-as-pdf/?ref=chatgpt
https://pdfcrowd.com/api/html-to-pdf-api/?ref=chatgpt

ネットワークデータのバッファやファイル入出力で配列を使用するが、プログラムロジックではリス

トが使いやすい場合。

5. リストのビューとして配列を使う場合

リストをビューとして扱うことで、メモリに負担をかけずに大量データを操作できることがあります。固定

サイズのリストが必要な場合、配列とリストを同期させ、リスト上での操作が直接配列の要素に反映される

ようにすると、データの操作を簡素化できます。

例:

配列を動的にリスト化して使いたいが、あえてサイズは変更したくない場合。

注意点

配列とリストが同期されている場合、以下のような制限や注意点があります。

サイズの変更ができない: `Arrays.asList()`で作成されたリストはサイズが固定されているため、要
素の追加や削除はできません（`UnsupportedOperationException`が発生します）。そのため、リスト

に新しい要素を追加したり削除したりする場合には別の方法が必要です。

プリミティブ型配列では使えない: `Arrays.asList()`は参照型（オブジェクト型）にのみ適用可能で
あり、プリミティブ型の配列では使えません。プリミティブ型の配列で同期を取りたい場合は、

`boxed()`を使ってラッピングする必要があります。

結論

配列とリストの同期は、配列とリストのデータが同じ内容を共有し、どちらの変更も反映される必要がある

場面で特に有効です。例えば、レガシーAPIとの統合やUIコンポーネントのデータ同期、パフォーマンスと
柔軟性の両立を求める場合などが典型的なシナリオです。ただし、サイズ変更やプリミティブ型配列の扱い

には制限があるため、それらの要件がある場合は他の方法を検討する必要があります。

ChatGPT の回答は必ずしも正しいとは限りません。重要な情報は確認するようにしてください。

Printed using Save ChatGPT as PDF, powered by PDFCrowd HTML to PDF API. 9/9

https://chat.openai.com/
https://pdfcrowd.com/save-chatgpt-as-pdf/?ref=chatgpt
https://pdfcrowd.com/api/html-to-pdf-api/?ref=chatgpt

